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Pin structures on manifolds
quotiented by discrete groups

M. BLAU (*), L. DABROWSKI (**)

Scuola InternazionaleSuperioredi StudiAvanzati
Trieste,1-34014

Abstract. We presenta methodof classifyngand constructing bundleprolonga-
tionson manifoldsof theform M/f’, where I’ is a discretegroup, in termsof data
on M, and apply it to iwo-dimensionalclosedsurfaces.We describeall eight me-
quivalent double coverings of the pseudo-orthogonalgroup and use thesefor
constructing pin structureson (productsof) non-orientable manifolds.

1. INTRODUCTION AND NOTATION

In this paperwe shall describespinor fields on quotient manifoldsof the type
M/F, whereF is a discretegroupof transformationsof M (actingproperly and

without fixed points). To do this, we first study spin-structuresonM/F and their

relation to spin-structureson M. Existenceconditions and thenumberof inequi-

valent structuresare characterizedby known topological conditionsand in this

paper we shall reinterpret these conditions in a group-theoreticallanguageand

give a method of classifyingand constructingall the spin structureson M/F in

termsof analogousobjectsanddataonM (section2).
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Ourmethodhoweverallows us to treatnot only spin structures,corresponding

to theexactsequence

1 —*Z, -+Spin(p, q) -+SO(p, q)-÷1,

but more generally, the case of an arbitrary discretecentralextensionof a Lie

groupG

1 -+K-~G-~G-~1

and its associated~xG-structure>>.This includespin (cf. section 3 and 4) and

spine structuresas well as couplingsof spinorsto non-abeliangaugefields. More

precisely a G-structure (or prolongation of some principal G-bundle F to the

structure group G) on M/F — denoted by r~: F -+ F or (F, i~) consistsof a

principal G-bundle~ : F —~ M/F, a principal G-bundle iT : F -~ M/F and a strong

bundle morphism s~: F —~F with the propertiesiT o = ~ andr~(ëi~)= s~)p(h),

where ~/i (resp. ~(~)p(h)) denotesthe principal right action of G on F (resp.

of G on F).
If we define two G-structures(F, 17) and (F’, ii’) to be equivalent iff there

exists a strong bundle isomorphism ~3: F -+ F’ which mterwines 7) and 77’, 77’ =

= o ~, then the inequivalent G-structuresare labelled by the first cohomology

groupH’ (M/F, K) of M/F with coefficientsin K [1].

In this setting fieldsaresectionsof bundlesassociatedwith somerepresentation

D of G in a linear space V or, what is actually the same,equivariantfunctions

fromFto V

= D(h
1) ~ti(~).

This includesfields associatedto F, sinceany representationof G can be thought

of as a representationof G (via composition with p) and any G-equivariant
function on F as a G-equivariantfunction on F (by compositionwith i~)but not

vice versa. For spinors, F is the bundle of oriented orthonormal frames,and

integerspin fields can be identified with ordinary tensorson M/f. Furthermore,

fields on M/F correspond— in a way which will be made precise below — to

F-invariant fieldson M. Additionally any connectionwon F givesrise in a natural

way to a connection~ (anda covariantderivative)on F through

~

where Tp (the derivative of p) is the isormorphism (Ker p is discrete!)of Lie
algebrasof G andG, and7~’~’is thepull-backof forms.

At the end of section 2 we commenton the possibility of extendingourclassi-

fication and construction schemeto orbifolds of the form Mu’, where F may

havefixed points,and illustrate thedifficulties by someexamples.
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In section 3 we study — in order to properlyhandlereflectionsand <‘spinors>

on non-orientable manifolds — all thedoublecoveringsof the pseudo-orthogonal

group O(p, q). There are eight ot tnem if we identify the extensionswhichnot

only are isomorphic as groupsbut also the isomorphisminterwinesthe covering
homomorphisms,i.e. the following diagramcommutes

It turns out that this is the right notion of equivalenceof two central exten-

sions; for instance G or G’-structures may have distinct existenceconditions
evenif G and G’ are isomorphic asgroupsbutnot equivalentin the abovesense.
The reader who accepts the formula (3.3) may skip the boring details which

are included since it is often claimed that G = O(p, q), p. q > 1, hasonly four
Z2 -extensionsand since the six extensionswhich do not arise from Clifford
algebrasseemto haveattractedlittle attention so far (seehowever[2]).

The results obtainedup to then will be illustrated by someexamples(includ-
ing Riemannsurfacesand pin structures on non-orientable manifolds)in section

4. Section5 summarizesourresultsandaddressessomeopenproblems.

2. THE RELATION BETWEEN a-STRUCTURESON M AND M/ F

Assumethat we havea G-structurei~: F-~F on M/1’. We canusethe canoni-
cal projection p : M -+ M/[’ to pull back these bundles to M. Thus we obtain

F’M :=p*F=((x,ê)EMxF:p(x)=i~(~))

FM :=p*F=((x,e)EMxF:p(x)=ir(e)

with the obviousprojectionslrM : (x, e) -* x and~M : (x, ~)-+ x. Then

7)M .FM -+FM, (x, ê)-~-(x,,
1(ê))

defines a G-structure on M (FM and FM are principal G- and G-bundleson M
and

7)M has the required properties). Since it originatesfrom a G-structureon
M/r, 7)M :FM -+FM is F-invariantin the following sense:

i) There existsa subgroup{ u~E Aut FM : ~M ° u
7 7olrM,7EF}ofAutFM

which is isomorphic to F (we identify thesetwo groupsand call u a lift of y).

In the caseat handu, is simply given by

u : (x, e) —~ (‘y(x), e)

ii) The automorphism group of FM has a subgroup IT = { ii E Aut FM

o = o 7~ } which covers F. The homomorphism K : -+ u7 makes
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the following sequenceof groupsexact
—‘C

(2.1) l-*K--*F-~F-+l,

where K C G is identified with the right multiplication by elementsof K (this
is averticalautomorphism,sinceK is centralby assumption).

iii) Thereis a grouphomomorphisma : F -+ F, -y —~0(7), actingas

0(7) :(x,è)—*(’y(x),~)

with the property K o a = idr ,i.e. the exactsequence(2.1) splits.

Our main result is that this reasoningcan be invertedand G-structureson
M/r can be put in I : 1 correspondencewith G-structureson M satisfying (i-

iii) and splittingsof (2.1).

ThEOREM: Any G-structureon M/F can be obtainedas the quotientof a
F-invariant G-structureon M. There is a bijective correspondencebetweenme-

quivalent G-structuresonM/F and{ F-invariantG-structureson M} x Hom (F, K),
i.e.: the quotients~ FM/a(F) ‘~‘M!F and ~ : F~-÷ FM/F’ are equivalent

if, andonly if,i~ : FM -÷FM and~1’ : F~-+ FM areand,moreover,a= a’.

REMARKS.

A) If FM is the (orthonormalor linear) frame bundle of M, u.y is given by
the derivative(or tangentmap) of 7. Another case,in which the lift of E F
will always exist, is provided by a trivial principal bundle. Little howeveris

known aboutthe generalcase.
B) If M is simply connected,7r1 (M/F) Fand G-structureson M/IT areknown

to be classifiedby H’ (M/F,K). In our frameworkwe recoverthis resultas follows.

Since ir1 (M) = 0, M hasaunique G-structure,which is thereforeautomatically

left invariant. If it splits, G-structureson M/F are labelledby elementsof

Hom(I’, K) = Hom(ir, (M/F), K) = Hom(H1 (M/F),K)=H’(M/F,K)

Proof of the theore.’n: Let ~ : FM -~ FM be a G-structureon M which is

F-invariant in the sense above, and let Go be a splitting of the sequence2.1.

It defines a bijective correspondencebetween Hom(F, K) and the set of all

splittingsby Ii -+

0h (y) with

ah(7) :~~~*a~(y)~h(’y) for hE Hom(IT,K).

For any splitting a, FM/a(F) and FM/F are principal G- and G-bundlesover

M/F with the projections

~ :[ëX]O(f)-+lr(x) and IT :[eX]F -+ir(x),
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where E ~ e~E 7rj~’(x),and [ ] denotesthe equivalenceclass in the
quotientbundles.The quotientbundlehomomorphism

~0 :FM/a(F)~FM/F, E~x]o(r)

thendefinesa a-structureon M/I’.
We shall now show that the mapping Q : { F-invariant G-structuresonM}

x Hom(F, K) -* I G-structureson M/F} is injective. To this endtake two G-struc-
tures 7)M :FM -~ FM and : P’~ ~M and two splittingsa and a’. Assume

that : FM /a(F) -+ FM/F and 77~,: F~/a’(F)-* FM/F are equivalent.Then
it canbe seenthat ~~M’ ~ and(F~,,7~)are themselvesequivalent.

Furthermore — as we shall now proceed to show — this implies a = a~’ In
order to seethat, assumethat thereis a strongG-equivariantbundleisomorphism

FM /o(F) -+ F~/a’(F) inter-twining 77~and i.e. = o j3, and that there
is at leastone‘y E F with 0(7)� a’(’y). Considera pathL : [0, 1] -+M with L(0)=
=x and L(1) = 7(x) for some x EM. Then abovethis path thereare E G,

continuousin s for s E [0, 1], suchthat

~3(~1a(r)) = ~g~shba’(r)) for e
3 Eir

1(L(s)).

The condition that j3 is well defined (i.e. independentof the representativeof
the equivalenceclass)maybe expressedas

= o(’y)~ ~

Next, from ?7~= o jI it follows that p(/3
5) = 1 and therefore E K. Since

is continuousandK discrete,~ = andthus

a’(7)~o=a(-y)~0.

Since was arbitrary, this implies a = a’, in contradictionwith the assumption.

ThereforeQ is injective.
It only remains to prove that Q is surjective, i.e. that eachG-structureon

M/F can be obtained asa quotient of a G-structureon M which is F-invariant.

Given a G-structure~: F -÷ F on M/F, pull it backto M to obtainthe G-structure

FM -+ FM definedin section 1. QuotientFM by F andFM by o(F), where
a(’y) : (x, ~) -+ (y(x), ~) (c.f. the property iii) and define the quotientbundle

morphism

(2.2) 77 .FM/a(F)-+FM/F, [(x, ~)]a(r)~ [(x, ~

The bundle isomorphismFM/a(I’) —* F by [tx, ~a(r) -+ ë shows that (2.2)

and 77 : F -+ F are equivalent(we identify FM/F with F by [(x, e)Ir -+ e. Thus
Q is surjectiveand this finishesthe proofof the theorem, U
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REMARKS

A) The isomorphismH1 (M, K) = Hom(ir, (M), K) shows that it suffices to
check the consistencyof the constructedbundles on loops (this method will

also beusedin the examplesof section4).
B) Describing fields in terms of equivariantfunctions (section 1) we schema-

tically havethe following situation:

FM ~ V

~ ~

FM-+F

7TM

4~ .j.ir

M -~M/F

Given a local section~ of F, we can pull back 1’ to M/F. Furthermore via ~
we can regard i,li asan equivariant function ~t’ : FM -* J~’~ ~ =

Let us now investigate its behaviourunderF: choose E F coveringa lift u
7

of ‘y E F. Then chooseframes~ and E FM abovex and ‘yx, respectively;
relates these frames up to a translation 121x)E ~ in the fibres

t~.vex (x)~~

and

~ ~(~X)12(x))=D’(12(x)) ~/(e.Y(X)).

Thus

(2.3) ~(ë~(X)) =D(12(x)) ~ti(~)

and if we choose the frames~-y(x) in such a way that i~(x)= 1, we seein which

sensefields on M/F correspondto invariant fields on M. If we choosea different
splitting a’ insteadof a, relatedto a by an elementIi of Hom(F, K), (i.e. a diffe-
rent G-structure)(2.3) is replacedby

1~11(e(X))=D(h(’y)ii (x)) ~‘(~)

giving rise to twisted periodicity conditionsalong thoseloops in M/F which lift

to paths from x to 7(x) in M.
C) It is tempting to ask whether the procedureand resultsoutlined in this

section can be generalizedto the case,where the action of F on M has fixed
points. It is well known that in this case the resulting spaceM/F belongs to a
class of orbifolds [3], or V-manifolds [4] which are globally of the form M/F,

where F is a discrete group acting properly discontinuouslybut perhaps with
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fixed points. Apart from the interest in its own right, this question may be of

relevance for fields arising from a superstringwhich propagatesin an orbifold
(c.f. [5]).

We make some scattered remarksillustrating the limitations of our method:

a) If the theorem were true for orbifolds without reservations,no spin-structu-

res could exist on spacesof the form ~P2/F, since they could be pulled back

to yield spin-structureson — a contradiction.We havehoweverthe remark-

able result that [6] UR2/Z2 = ~4, where acts asa complex conjugation(in
homogeneouscoordinateson ~tP2)and the fixed point set of Z2 is RP2 CffP2.

Howeverit is well known that S
4 admits a spin structure,namely

Spin(S)-+ SO(S)-~S4 = S0(5)/S0(4).

b) Although it is true that quotientsof principal bundlesoverM are <<principal
V-bundles>> [4] over M/F, we cannotconcludethat all principal V-bundles

over M/F arise in this way, since pullbacksof these will as a rule not give rise

to ordinary principalbundleson M.

c) Even very simple orbifolds like lR3 /Z

2 (Z2 being a point-reflection)may

fail to be topological manifolds, however,many theoremsdevelopedin the
smooth-manifoldcontext can be generalizedto orbifolds.Whencea classification
of G-structureson orbifolds may —despitenaive appearance-~ neverthelessbe
possiblealongthe linesof the beginningof this section.

3. THE DOUBLE COVERINGS OF O(p, q)

In this section we shall describethe doublecoveringsof the pseudo-orthogonal

groups O(p, q) (preservingdiag (++ . . - +—— . . - —)), which areequalto the

standarddoublecovering

(3.1) p :Spin0(p,q)-’.500(p, q),

defined in terms of Clifford algebrasover the connectedcomponentSO~(i-~q)

of O(p, q). SinceO(p, q) O(q, p) we can restrict our attention to the case

p ~ q.

Considerfirst the case q = 0: 0(11, 0) will be denotedby 0(n) andhas two
connectedcomponents:one containing the identity and one tht~reflection of
— say — the first axis. Since the coveringof the identity componentis fixed
by (3.1) and the squareof the element e1 covering the reflection has to cover

the identity of SO0(p,q), there are exactly two inequivalentcoveringsof0(n).

We denotethem

p~:Pin~(n)-+O(n)
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according to (e1 )2 = ±I. They can both be describedin termsof Clifford al-

gebras,or, equivalentlyby

(3.1) Pin~(n)= (Spin(n)x 4~/ Z2

Piii~ (n) ~ [a, h] ~+ (p(a), V (h)) E SO(n)0 0(n),

where

4~=Z, xZ2 (h,h~)r~+hh~EZ2,

4~= Z4 i+i~~ EZ2,

and0 denotesthe semidirectproduct.

Now consider the case p ~‘ q ~ 1 - The group O(p, q) has four components

andtherefore2~= 8 inequivalentdoublecoverings,which we shall call

~ab~c :Pina.~)~~(p,q)-+O(p, q),

where a, b, c E ~+, — }describethe squaresof the elementscoveringreflections

along the first, the last axis and their composition.Alternatively, we can use

the label abc insteadof c to say whetherthe elementscoveringthesetwo reflec-

tions commute (abc= +) or anti-commute(abc = —).

Over the maximal compactsubgroup0(p) x 0(q) of O(p, q) p~CCreducesto

pa~bC : (Pin
0(p) XOb cP~ (q))/Z, -+ 0(p) x 0(q)

(3.2) [a, b] -+ (p(a), p(b))

where XabC denotesthe direct product with commuting (resp. anticommuting)

reflections for abc = + (resp. abc = —), Z

2 = {(l , I), (— 1, — 1 )} andPin°(p),
a E (+, —), are given by (3.1). Only two of these coverings(characterizedby

a = — b and abc = —) can be obtained in termsof Clifford algebrasof JR’~,

namely Pint ~ (p, q) and Pin ‘~ ‘~ (p, q). They are sometimesdenoted by

Pin~(p,q).

A better understandingof Pin0.~(p,q) may be gainedby writing them as

pjfla~b.C(p q) = (Spin0(p,q) Xb 80~)/Z7.

If we also write 0(p, q) as a semidirect product SO0(p, q) C (Z2 x Z,) then
pa~b~cassumesthe form

(3.3) [a, h] -+ (p(a), ~4~b~c(h))

where ~Al3,c’ : 8a,b,c -+ x are the eight central extensionsof Z, x

by Z2. More specifically, ~ is isomorphicwith Z2 x x Z2, D4 (dihedral

group), Z2 x Z4 or Q4 (quaternionicgroup) when in the triple (a, b, c) there

are respectivelythree, two, one or zero + signs (80~~~cwith abc = — occuras
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vee groups [7] of Cliffords algebras D
4 = G20 = G11 and = G02,whereas

~9.b,c with abc = + do not arise in this way). Somemoreinformation can be

obtainedby determiningthe centreZ0~~)t~(p,q) of pj,1a.b.c(p,q).
Considerfirst the caseabc =

p odd, q odd

~ = Z2 x x Z2 for a = (_)~_1)I2,b = (_)(q_1)/2

Z2 x Z4 for a = (_)(p—l)/

2 b _(_)(q—l)12

x Z~ for a ~(_)Q~-1)/2 b=(__)(~_l~2

(Z
4 x Z4 )/Z2 for a = —(-—) ~ b=_(_)(~_l)I

2

p odd, q even

= Z
2 x Z2 for a=

Z4 for a = _(_)Q~_1)/
2

p even, q odd

= Z
2 x Z~ for b = (_)(q_1)1

2

Z
4 for b = —(—) (q—1)1

2

p even, q even

Za,b,C = z
2.

If abc = —, the anticommutativity reduces the number of elementsin ~
andwe obtain for

p odd,q oddorp even,q even

Za,b,c= z2

p odd,q even

Za,b,c = x Z2 for a = (_)~P+~l)1
2

for a

p even, q odd

Za.b,c = x Z
2 for b = (—) (P÷~’~1

2

Z
4 for b = —(—-) (p+q—1)/2
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In the light of (3.3)standardtheoremsshow the existenceof finite dimensional

irreducible representationsof Pin°’
1’”(p, q). Whetherthese are faithful is not a

priori obvious. It is interestingto note that it is the groupPint ‘~ (3, 1) which
playsa role in quantumelectrodynamics(c.f. [8]).

If one is only interestedin certain subgroupsof the full orthogonal group

0(p, q) like the orthochronousgroup Ot(p, q) containingonly <<space-like>>

or <<time-like>> reflections, one can regardtheir double coveringsas subgroups

of Pin0b~c(p,q) with two labels arbitrary. The notation Pin t°(p, q) will be

usedin Chapter4 for doublecoveringsof Ot(p, q).

4. EXAMPLES

We start with oriented closed two-dimensionalmanifolds. They are topo-

logically classifiedby their genusg, i.e. the numberof handles.We havealready

describedthesphere~2 (g = 0).

Example1
The torus T = if/F (.g = I) is the quotientof the complexplaneby a lattice F

generatedby two translations7, and ‘y
2. Starting with the trivial spin structure

on if it is easyto find the 4 = J Hom(F, Z2) I structureson T since (2.1) reads

1 -+ Z, -+ F x -+ F -+ 1,

which certainly splits.

Exa~nple2
A (Riemann)surface with genusg ~ 2 is a quotientof the (contractible)

upperhalf plane U = (z = x + iy E if :j’ > 0) by aFuc/isian group F with 2g
generators~, 1 ~ / ‘~ 2g, satisfyingthe relation

2g-1

(4.1) J~~J(7+1’~i~’1)=1,
I odd

If we let PSL(2, IR) = SL(2, lR)/Z2 act on U by fractional linear transformations

ia b
(4.2) z-+(az+b)(cz+dY’, for ESL(2,Ifl

c d

which presevethe Poincaré metric y
2 dx dy, then F can be identified with a

discrete subgroupof SL(2, R)/Z
2 which acts on U properly discontinuously

and a + d > 2 ensuresthat thereare no fixed points.Trivializing the bundle

of orthonormalframes by a global framee(x, y) = (ya/ax,ya/ay) the derivative
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5; of is given by 5; : (z, e) —÷ (7(z), eR(z)),whereR(z) is a rotation by theangle

2p(z)determinedby

exp(2ip(z)) = (cz + d)(ci + d)’.

The two automorphismsof F= Ux Spin(2)covering5;aregivenby

±~:(z, e)-+(’y(z),±~R(z)),

wherethis time R(z) is given by exp(i~p(z)a3).Thegroupof suchautomorphisms
is a nontrivial doublecoveringof SL(2, R)/Z2 (the nontriviality canbe seenby
consideringa loop in SL(2, R)/Z2 = S0~(2,1) connectingthe rotation by 2,r

to the identity). Hence it mustbe isomorphicto

SL(2,R) Spin0(2, 1) -+ SL(2,R)/Z2 ~ S0~(2,1).

We obtain upon restrictionthe exactsequence

Z2 —~.Y-+F

whichsplitssincetherelation(4.l)can be alwayssatisfiedon the level of SL(2, IR)

matrices.All the 22g = Hom(F,Z2) spin structureson U/F are definedaccord-

ing to the methodof chapter2.

We passnow to closed nonorientablesurfaces.Topologically they are also

classified by their genusg ~ 1 which is, this time, a number of components
IRP2.

Example3
The g = 1 surface RP2 has beenalreadydealtwithin [9]; we shall rephrase

this in our terminology in light of the general constructiongiven in chapter2.
Since RP, = S

2/Z
2, where is generatedby the total inversionJ :x-÷—x

in R
3, we startwith the unique pin structureon = 0(3)/0(2)(with thestruc-

turegroupPint(2)), namely

Pint (3)’~$0(3)-÷0(3)10(2)= s2,
where = p~.The derivative J = TJ is simply given by J :A~-~’—A,AE 0(3).

It is covered by ±J : A -÷ ~A, ~ E Pint (3), where w is the canonicalvolume
element of the Clifford algebra underlying Pint (3). We see that splitting of

(1, —l)-+(l, —1,J, —J) -+ (l,J)

exists iff w2 = I. This condition singlesout the groupPin(3) and therefore
there is no Pink (2) structureon RP

2, but thereare the following two .Pin’(2)
structures
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r~,:Pin(3)/{l , ±w} —+ O(3)/~l,— l}.

Example4
A nonorientableclosedsurfaceAIg of genusg ~‘ 3 is a quotientof U by a NEC

(non-euclidean crystallographic) group F, generatedby g elements with the

relation

[1,~ = 1. (4.3)

They act as a compositionof J :z-÷—iandthe action of SL(2, lR) via (4.2) (with
a. ~ d.). Now, the groupgeneratedby SL(2, R)/Z

2 andJ is just Ot(2, I) (see

theendof chapter3). We obtain its double coveringsasPint~(2, 1) orPin t(2, 1)
according to whether we put a (trivial) Pint (2), or Pin(2) structureon U. In

these two casesan elementJ covermgJ satisfies(J)
2 = ±I and is explicitly

given by

J : (z, e) -÷ (J(z),e~J(z))

with I = a
1 or ia1, respectively.Thus a double covering?±of F is precisely

that subgroupof Pin t~(2,1) or Pin L (2, l)which coversF. This incidentally
showsthat the relation

[J5;~= 1 (4.4)

(requiredfor a splitting) can be satisfiedonly for one of thesetwo subgroups

if g is odd since then they differ by a sign 12g = — 1. In [10] it wasshownthat

there are P1n(2) but no ~j~+ (2) structureson closednon-orientableodd genus

surfaces and thus (4.4) is satisfied for F. For even genus we see that thereare

either both Pint(2) structuresor none. It was shown fri [10] that the former is

the case.
An immediateconsequenceof this and of the fact that Pin(2) hasno real

representations is that there are no Majorana (s)pinorson closed odd genus
non-orientablesurfaces(thisresult hasbeenalso shown in [11]).

In the rest of this section we shall discuss someexampleswhich servea two-

fold purpose.On the one hand they illustrate our method for more complicated

manifolds. On the other hand they show that the conditionsfor theexistenceof

<<non-Clifford>> pin structures generally differ from those for Pin~(n) and

Pin
t (p. q). The idea of the constructionis the following: the product of two

non-orientablemanifoldsadmits neitherPin+ nor Pin structures(the obstacle

being the non-commutativity of reflections in M
1 and M2). But this obstacle

can be overcomeif we equipM, x M2 with a pseudo-riemannianmetricand use
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pin structureswith one of the ~ q) groupswith abc = +. With this
in mind weproceedto

Example5

It is known that the product IRP2 x IRP2 doesnot evenadmitspin” or pin”

structures[13], but we can equipRP2 x IRP2 with a pseudo-riemannianmetric
of signature(++——). We may follow the samereasoningas in the caseof IRP2
alone but now simultaneouslyfor the two inversions and which commute.

By requiring that their lifts commute as well, (this excludes the Pin0L~~~(2,2)

groups with abc = — 1) we arrive at the conclusionthat the only admissible

structuregroup isPin ‘ ‘~ (2, 2). The four different splittings

OfJ~~:(1,J1)x(1,J2)—”(l,jw2)x(l,kw2), for /, kE(+,—)

then give rise to four pin structures on IRP2 x RP2. The fact that only
Pin ‘ ~ (2, 2) is admissibleis most easily seenin terms of maximal compact

subgroupsand using(3.2).

Example6

Let us considerfinally the product K, x K2 of two Klein bottles. Since it
admits metrics of arbitrary signature (p. 4 — p) this will allow us to seethe in-
fluence of the signature on the existence of ~ structures.Furthermore,

since K, x K2 is a Z2 x Z2 quotient of T x T (see below), which itself already

has 2~=16 spin structures,the subtle dependenceon these will also become

apparent.<<Twisted>> scalarand spinor fieldson K havealsobeentreatedin [14].

Since the Klein bottle is obtainedfrom T by quotientingthe Z2-actiongenerated
by

J : (x1, x2) -~(x1 + IT, —

we haveK1 x K2 = Tx T /F,whereF= x Z2 = (l,J,, J2, J1J2)with

J1 : (x1, x2, x3, x4 )-÷ (x1 + IT, — x2, x3, x4),

J2 :(x,,x2,x3,x4)-*(x1,x7,x3 +ir, —x4).

The inequivalentp1,1a,b,C structureson Tx T canbe written downas

77: Tx Pin~bC(p,4 —p)~~Tx 0(p, 4 —p).

(x, A)-+ (x, R(k, x)p0b~~(A))

where R(k, x) is a rotation in the 3-4 plane with winding numberk’ = 0 or 1
along x.. Starting for examplewith the trivial (k1 = 0) pin-structureone sees
that the structuregroupsPint ~+ + (p, 4 — p) with p = 2, 3 are allowed,each
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leadingto 4 = Hom(Z2 x Z7, Z2) I pin-structureson K1 x K2.
For the twisted pin-structures(k’ ±0 for some i) the situation is as follows.

Thereareno pj,70.b.C(3 1) structuresfor signature(— +++) andany k, whereas

in the case(+—++) we havethe following admissiblestructuregroupson K1 x K2.

Pint ,+ ‘~ (3, 1) for k
2 = k’ = 0

Piii~’~’~(3,1)fork2 =0, k1 =

Pin’~’(3,l) fork2 =l,k’ 0

Pi,i’’~ (3,1) fork2 = 1, k’ = 1,

(k’ andk3 arbitrary) giving rise to plenty of pin structures. The other signatures

canbe dealtwith analogously.

5. CONCLUSIONS AND OPEN PROBLEMS

We have classified and constructedG-structureson quotientmanifolds M/F

in terms of data on M and illustrated this method on Riemann surfacesand

certain non-orientablemanifolds. Furthermorewe have studied the 8 inequi-

valent double coveringsof the pseudo-orthogonalgroups O(p, q), p it’ q ~ 1,
emphasizingin particular their finite group structure and their relevance for

defining <<pinors>> on non-orientablemanifolds. There remain howeversome
openproblems,which deserveattention:

a) Do there exist finite dimensionalfaithful irreducible representationsof
pjfla~bc(p q)?. Preliminary investigationsseemto indicate that this may not

be the casee.g. for the groupPin1 + + (3 1).

b) What are the topological obstructionsto the existenceof a Pin0,l)~~struc-
ture on a manifoldM?. Our examples(section4) only indicatethat they certainly

differ from the obstructionsfor pint-structures.

c) Can the theoremof section 2 be extendedin a meaningfulway to handle

orbifolds as well? This questionhasbeendiscussedat the endof section2, where

the limitations of this extensionhavebeenindicated.

d) Can one suggesta gedankenexperiment which could be sensitive to the

labels a, b, c? One can write the analogueof Diracoperator for <<non-Clifford>>

groups Pin0l~.C;the squareof this operatorwill howevercontain mixed deriva-

tives which doesnot follow the original ideaof Dirac.
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Note addedin proof: After completion of this work we receivedthe papers
<<Spin structuresand Killing Spinorson Lens Spaces>>(by A. Franc, 1. Geom.

Phys. 3 (1987), 277) and <<Spinorson SphericalSpaceForms>> (by P. Gilkey,
Oregonpreprint) where similar topicsare discussed,the methodshoweverbeing
quite different.
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