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Pin structures on manifolds
quotiented by discrete groups
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Abstract. We present a method of classifyng and constructing bundle prolonga-
tions on manifolds of the form M/T, where T is a discrete group, in terms of data
on M, and apply it to two-dimensional closed surfaces. We describe all eight ine-
quivalent double coverings of the pseudo-orthogonal group and use these for
constructing pin structures on [products of) non-orientable manifolds.

1. INTRODUCTION AND NOTATION

In this paper we shall describe spinor fields on quotient manifolds of the type
M/T", where I' is a discrete group of transformations of M (acting properly and
without fixed points). To do this, we first study spin-structures on M/T" and their
relation to spin-structures on M. Existence conditions and the number of inequi-
valent structures are characterized by known topological conditions and in this
paper we shall reinterpret these conditions in a group-theoretical language and
give a method of classifying and constructing all the spin structures on M/T" in
terms of analogous objects and data on M (section 2).
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Our method however allows us to treat not only spin structures, corresponding
to the exact sequence

1 > Z, - Spin(p, q) > SO(p, q) > 1,

but more generally, the case of an arbitrary discrete central extension of a Lie
group G

1—>K—>6—&G—>1

and its associated <<5-structure». This includes pin (cf. section 3 and 4) and
spin, structures as well as couplings of spinors to non-abelian gauge fields. More
precisely a G-structure (or prolongation of some principal G-bundle F to the
structure group 5) on M/T' — denoted by n -F > For (ﬁ, n) — consists of a
principal G-bundle # : F - M/T", a principal G-bundle 7 : F —» M/I" and a strong
bundle morphism 7 : F - F with the properties ™ o 7 = 7 and n(eh) = n(e) o).
where &l (resp. (&) p(1)) denotes the principal right action of G on F (resp.
of G on F).

If we define two G-structures (F n) and (F n') to be equivalent iff there
exists a strong bundle 1somorph15m B : F - F" which interwines nand n', ' =
= 7 o f, then the inequivalent G -structures are labelled by the first cohomology
group HL(M/T, K) of M/T with coefficients in X [1].

In this setting fields are sections of bundles associated with some representation
D of G in a linear space V or, what is actually the same, equivariant functions
from Fto V

Y@y = Dh™1) y(@).

This includes fields associated to F, since any representation of G can be thought
of as a representation of G (via composition with p) and any G-equivariant
function on F as a (}'-equivariant function on F (by composition with i) but not
vice versa. For spinors, F is the bundle of oriented orthonormal frames, and
integer spin fields can be identified with ordinary tensors on M/I". Furthermore,
fields on M/T" correspond — in a way which will be made precise below — to
T-invariant fields on M. Additionally any connection w on F gives rise in a natural
way to a connection & (and a covariant derivative) on ﬁthrough

G =Tp Hn*w

where Tp (the derivative of p) is the isormorphism (Ker p is discrete!) of Lie
algebras of G and G, and n* is the pull-back of forms.

At the end of section 2 we comment on the possibility of extending our classi-
fication and construction scheme to orbifolds of the form M/I", where I' may
have fixed points, and illustrate the difficulties by some examples.
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In section 3 we study — in order to properly handle reflections and «spinors»
on non-orientable manifolds — all the double coverings of the pseudo-orthogonal
group O(p, q). There are eight ot them if we identify the extensions which not
only are isomorphic as groups but also the isomorphism interwines the covering
homomorphisms, i.e. the following diagram commutes

G—G'
%

It turns out that this is the right notion of equivalence of two central exten-
sions; for instance G or G '-structures may have distinct existence conditions
even if G and G’ are isomorphic asgroupsbut not equivalent in the above sense.
The reader who accepts the formula (3.3) may skip the boring details which
are included since it is often claimed that G = O(p, ¢), p, ¢ > 1, has only four
Z,extensions and since the six extensions which do not arise from Clifford
algebras seem to have attracted little attention so far (see however [2]).

The results obtained up to then will be illustrated by some examples (includ-

ing Riemann surfaces and pin structures on non-orientable manifolds) in section
4. Section 5 summarizes our results and addresses some open problems.

2. THE RELATION BETWEEN G-STRUCTURES ON M AND M/ "

Assume that we have a G-structure n: F—F on M|T". We can use the canoni-
cal projection p : M - M/T" to pull back these bundles to M. Thus we obtain

F, :=p*F=((x, )EM x F : p(x) = #(?))
FM =p*F=(x,e)EMxF :p(x) =m(e)
with the obvious projections m,, : (x, e} = x and 1TM :(x, &) - x. Then
w Fy > Fys (68> (x, n@)

defines a G-structure on M (~ and F,, are principal G- and G- bundles on M
and n,, has the required properties). Smce it originates from a G-structure on
MIT,m,, : F - F), is T-invariant in the following sense:

i) There exists a subgroup { u, € Aut Fo imy o , =Yom ,'YEP}OfAutF
which is isomorphic to I' (we identify these two groups and call u a lift of ¥).
In the case at hand u, is simply given by

u, i (x, e)=>(y(x),e)

i) The automorphism group of ﬁM has a subgroup T = {'177 € Aut f"M
My © 177 =u, ony } which covers I'. The homomorphism k :177 >u, makes
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the following sequence of groups exact
@.1) 1>K->T5T>1,

where K C G is identified with the right multiplication by elements of K (this
is a vertical automorphism, since X is central by assumption).
iii) There is a group homomorphism o :I" > I", v = ¢(«), acting as

oY) : (x, €) > (v(x), @),

with the property ko 0 = id|,,i.e. the exact sequence (2.1) splits.

Our main result is that this reasoning can be inverted and a-structures on
MJT can.be put in 1 : 1 correspondence with G-structures on M satisfying (i-
iii) and splittings of (2.1).

THEOREM: Any G-structure on M/T" can be obtained as the quotient of a
Tnvariant G-structure on M. There is a bijective correspondence between ine-
quivalent G-structures on M/F and {-invariant G-structures on M} x Hom (T, K),

e.: the quotients~n F o) = F, /T and n , fj'” - FM/F are equivalent
if, and only if, n : F, —>F and n’ F' ~ F,, are and, moreover, 0 = o'.

REMARKS.

A) If F), is the (orthonormal or linear) frame bundle of M, u, is given by
the derivative (or tangent map) of <. Another case, in which the lift of y €T
will always exist, is provided by a trivial principal bundle. Little however is
known about the general case.

B) If M is simply connected, 7, M/T) = Tand G-structures on M/T" are known
to be classified by H! (M/T",K). In our framework we recover this result as follows.
Since T M)y =0M has a unique G-structure which is therefore automatically
left mvar1ant If it splits, G-structures on M|T are labelled by elements of

Hom(T, K) = Hom(‘lrl M), K) = Hom(H1 M/T),K) =H'\M/T K)

Proof of the theorem: Letn, :fM - FM be a G-structure on M which is
INinvariant in the sense above, and let o, be a splitting of the sequence 2.1.
It defines a bijective correspondence between Hom(I', K) and the set of all

splittings by /1 — o, () with
0, (v) :€~>0,(y) éh(y) for h € Hom(, K).

For any splitting o, ﬁM/o(F) and F, /T are principal G- and G-bundles over
M/T" with the projections
7:le, ]

o(ry = ™) and wle ] > mx),
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where é‘x c i;ll(x), e, € ﬂ;{l(x), and [ ] denotes the equivalence class in the
quotient bundles. The quotient bundle homomorphism

n, :Fylo@)>F) /T, 8], ¢y~ @],

then defines a G-structure on MJT.

We shall now show that the mapping Q : {T-invariant 5—structures on M}
x Hom(T, K) — { Gstructures on M/l"} is injective. To this end take two G-struc-
tures n,, : F - F,, and nM F' _’EM and two splittings 0 and ¢’. Assume
that n_ F /a(l") - F), /T" and n . FI'” Jo’'T) - FM/l" are equivalent. Then
it can be seen that (F s nM) and ( Mo 177’” ) are themselves equivalent.

Furthermore — as we shall now proceed to show — this implies 0 = ¢/ In
order to see that, assume that there is a strong 5—equivariant bundle isomorphism
B : F~ Jo(l") — f /o' (") inter-twining n, and nie. n, = n_ o B, and that there
is at least one vy E T’ with o(y) # o' (7). Con51der a path L [O 1] - M with L(O)
=x. and L(1) = ¥(x) for some x € M. Then above this path there are ﬁ c G
continuous in s for s € [0, 1], such that

BUE 1y ry) = (EF,], ) for e €7 'L

The condition that 8 is well defined (i.e. independent of the representative of
the equivalence class) may be expressed as

O'(‘Y) ‘evo BO = 0(7) go Bl .

Next, from n, =7, . B it follows that p([}’) = 1 and therefore 5, € K. Since
E, is continuous and K discrete, Bo = 31 and thus

0'(7) €, =0(V &.

Since EO was arbitrary, this implies 0 = ¢', in contradiction with the assumption.
Therefore Q is injective.

It only remains to prove that Q is surjective i.e. that each 5-structure on
M/T can be obtained as a quotient of a G-structure on M which is l"-mvanant
Given a G-structure n: F>FonM /T, pull it back to M to obtain the G-structure

My ,FM - FM defined in section 1. Quotient FM by I' and FM by o(I'), where
a(y) : (x, ) > (y(x), & (c.f. the property iii) and define the quotient bundle
morphism

(2.2) M, 1 Fayl0(0) > Fyy [T, [(x, D), 1) = [, 0@

The bundle isomorphism i‘:M/O(F) > F by [(x, é)]a(r) — € shows that (2.2)
and n : F' - F are equivalent (we identify F, /T" with F by [(x, e)l. = e. Thus
Q is surjective and this finishes the proof of the theorem. L
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REMARKS

A) The isomorphism Hl M K) = Hom(wl(M), K) shows that it suffices to
check the consistency of the constructed bundles on loops (this method will
also be used in the examples of section 4).

B) Describing fields in terms of equivariant functions (section 1) we schema-
tically have the following situation:

F, LELy

Ty ¥ in
Fy->F
Ty 4 I
M —-MT
Given a local section € of I:: we can pull back ¢ to M/T". Furthermore via E
we can regard Y as an equivariant function ¥ : F -V, ¥ €)= V(& 1)
Let us now investigate its behaviour under I': choose u eT covering a lift u,
of vy € T". Then choose frames € €, and e7 o) €EF, above x and vx, respectlvely,

u relates these frames up to a translanon ix)Ee 6 in the fibres

02 =2 . ax)
and

V(@,8) = Y@, () 8x) =D @) VE, (4 )
Thus
2.3) U@, ) =D@x) V@)

and if we choose the frames ENX) in such a way that (x) = 1, we see in which
sense fields on M/I" correspond to invariant fields on M. If we choose a different
splitting ¢’ instead of o0, related to ¢ by an element 22 of Hom(T", X), (i.e. a diffe-
rent G-structure) (2.3) is replaced by

V@, ) =DM x)VE,)

giving rise to twisted periodicity conditions along those loops in M/T" which lift
to paths from x to y(x)in M.

C) It is tempting to ask whether the procedure and results outlined in this
section can be generalized to the case, where the action of I' on M has fixed
points. It is well known that in this case the resulting space M/I" belongs to a
class of orbifolds [3], or V-manifolds [4] which are globally oi the form M/T,
where I' is a discrete group acting properly discontinuously but perhaps with
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fixed points. Apart from the interest in its own right, this question may be of
relevance for fields arising from a superstring which propagates in an orbifold
(cf. [5D.

We make some scattered remarks illustrating the limitations of our method:

a) If the theorem were true for orbifolds without reservations, no spin-structu-
res could exist on spaces of the form @P, /T, since they could be pulled back
to yield spin-structures on {P, — a contradiction. We have however the remark-
able result that [6] (lle/Z2 = §* where Z, acts as a complex conjugation (in
homogeneous coordinates on @P,) and the fixed point set of Z, is RP, CCP,.
However it is well known that S* admits a spin structure, namely

Spin(5) - SO(5) - S* = $0(5)/50(4).

b) Although it is true that quotients of principal bundles over M are «principal
V-bundles» [4] over M/T, we cannot conclude that all principal V-bundles
over M/T" arise in this way, since pullbacks of these will as a rule not give rise
to ordinary principal bundles on M.

c) Even very simple orbifolds like R? /Z, (Z, being a point-reflection) may
fail to be topological manifolds, however, many theorems developed in the
smooth-manifold context can be generalized to orbifolds. Whence a classification
of G-structures on orbifolds may —despite naive appearance — nevertheless be
possible along the lines of the beginning of this section.

3. THE DOUBLE COVERINGS OF 0(p, q)

In this section we shall describe the double coverings of the pseudo-orthogonal
groups O(p, q) (preserving diag (++ . . . +—— . .. —)), which are equal to the
standard double covering

3.1 p :Spiny(p, ¢) > SO0, (p, q),

defined in terms of Clifford algebras over the connected component SO, (p, q)
of O(p, q). Since O(p, q) = 0(q, p) we can restrict our attention to the case
p=q.

Consider first the case g = 0; O(n, 0) will be denoted by 0(n) and has two
connected components: one containing the identity and one the reflection of
— say - the first axis. Since the covering of the identity component is fixed
by (3.1) and the square of the element e, covering the reflection has to cover
the identity of SO0,(p, q), there are exactly two inequivalent coverings of 0(n).
We denote them

p* Pin* (n)~> 0(n)
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according to (61)2 = =+ 1. They can both be described in terms of Clifford al-
gebras, or, equivalently by

3.1 Pin*(n) = (Spin(n) x 4* / Z,,
Pin*(n) 3 [a, I] p—f(p(a), v*(h)) € S0(n) ® Z, =0(n),

where

+

4 =Z,xZ, (h)>hi'€L,,
4 =2, hohlel,,

and © denotes the semidirect product.
Now consider the case p 2 g = 1. The group O(p, ¢g) has four components
and therefore 2% = 8 inequivalent double coverings, which we shall call

P> € L Pin® 2 (p, q) > O(p, q),

where a, b, ¢ € {+, — }describe the squares of the elements covering reflections
along the first, the last axis and their composition. Alternatively, we can use
the label abc instead of ¢ to say whether the elements covering these two reflec-
tions commute (abc = +) or anti-commute (abc = —).

Over the maximal compact subgroup 0(p) x 0(g) of 0(p, ¢g) p

P20 (Pin (D) X  PIH® (@) Z, ~ O(p) % 0(q)
(3.2) la, b] = (p(a), (b))
where X

2be denotes the direct product with commuting (resp. anticommuting)
reflections for abc = + (resp. abc = —), Z, = {(1, 1), (= 1, — 1)} and Pin“(p),
a € (+, —), are given by (3.1). Only two of these coverings (characterized by

2.b.¢ reduces to

a = — b and abc = —) can be obtained in terms of Clifford algebras of R?-9,
namely Pin*> % (p, g) and Pin™'**(p, ¢). They are sometimes denoted by
Pin*(p, q).

A better understanding of Pin®?:¢(p, q) may be gained by writing them as

Pir®?-%(p, q) = (Spiny(p, )%, 8“2 )/Z,.

If we also write O(p, ¢) as a semidirect product SO0 (p, q) © (Z2 X Zz) then
08¢ assumes the form

3.3) la, k] > (p(@), ¥+ (h)),
where #0:¢ ;. 84.5.¢ » Z  x Z, are the eight central extensions of Z, x Z,
by Z,. More specifically, 84:2.¢ is jsomorphic with Z, xZ, x Z,,D, (dihedral

group), Z2 X Z4 or Q4 {quaternionic group) when in the triple (a, b, c) there
are respectively three, two, one or zero -+ signs (82:5.¢ with abc = — occur as
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vee groups [7] of Cliffords algebras D, = G, =G, ,and Q, =G, ,. whereas
8%-b:¢ with abc = + do not arise in this way). Some more information can be
obtained by determining the centre Z%-2:€(p, q) of Pin®?:¢(p, q).

Consider first the case abc = +:

p odd, q odd
z0b e =Z,xZ,xZ, for
Z,x2, for
Z,x2, for
(Z, xZ,)/Z, for
p odd, q even
zab.e = Z,x2, for
z, for
p even, q odd
zebie = Z,xZ, for
z, for
D even, q even
zehbe=7,.
If abc = —, the anticommutativity reduces the

and we obtain for

p odd, q odd or p even, q even

Zwbe -z,
p odd, q even
zebe =72, xZ,
z,
p even, q odd
ze:b.e Z,x2,

z,

for

for

for

for

a=(—)P-D2 p— (—)e-D2
= (=)@-D2 p o (y@-DI2

a=—(—) e-1/2 b=(—)l-112
a=—{(—) (P—l)/l" b=_(_)(q-l)/2
a= (e

a= _(_)@—1)/2

b= ()1

b =—(—)4-D2

number of elements in Z%%:¢

a= (_)(p+q-1)/2

a =_(_)(n+q-1)/2

b= (__) (p+q-1)/2
b=—(—) (P+q—1)/2‘
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In the light of (3.3) standard theorems show the existence of finite dimensional
irreducible representations of Pin“'b'c(p, q). Whether these are faithful is not a
priori obvious. It is interesting to note that it is the group Pin* >~ (3, 1) which
plays a role in quantum electrodynamics (c.f. [8]).

If one is only interested in certain subgroups of the full orthogonal group
O(p, q) like the orthochronous group O%(p, g) containing only «space-like»
or «time-like» reflections, one can regard their double coverings as subgroups
of Pin®?°¢(p, q) with two labels arbitrary. The notation Pin 1 (p, g) will be
used in Chapter 4 for double coverings of 01(p, q).

4. EXAMPLES

We start with oriented closed two-dimensional manifolds. They are topo-
logically classified by their genus g, i.e. the number of handles. We have already
described the sphere 5% (g = 0).

Example 1

The torus T = @/T (g = 1) is the quotient of the complex plane by a lattice I’
generated by two translations Y and Y,- Starting with the trivial spin structure
on ( it is easy to find the 4 = ] Hom(T", Zz) ] structures on 7 since (2.1) reads

1—>Z2—>FxZ2—>F—>1,

which certainly splits.

Example 2

A (Riemann) surface Eg with genus g = 2 is a quotient of the (contractible)
upper half plane U = (z = x + iy € € : y > 0) by aFuchsian group T' with 2g
generators v;, 1 <j< 2g, satisfying the relation

2g-1
-1,,-1 5y
.1 [T O ivido=1
j odd

If we let PSL(2, R) = SL(2,R)/Z, acton U by fractional linear transformations

a b
“.2) z = (az + b)ez + d) !, for ( d) E€SL2, R)

c
which preseve the Poincaré metric y~2dx dy, then T' can be identified with a
discrete subgroup of SL(2, R)/Z2 which acts on U properly discontinuously
and |a + d | > 2 ensures that there are no fixed points. Trivializing the bundle
of orthonormal frames by a global frame e(x, y) = (»¥3/0x, y8/9y) the derivative
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Y of vy is given by ¥ :(z, €) = (v(2), eR(z)), where R(z) is a rotation by the angle
2¢(z) determined by

expRip(z)) = (cz + d)(cz + d)y 1,
The two automorphisms of F=Ux Spin(2) covering 7 are given by

+ 5 :(z, €) > (v(2), + &R (2)),

where this time R (2) is given by exp(ip(z)0, ). The group of such automorphisms
is a nontrivial double covering of SL(2, R)/Z2 (the nontriviality can be seen by
considering a loop in SL(2, R)/Z2 = SO0 (2, 1) connecting the rotation by 27
to the identity). Hence it must be isomorphic to

SL(2, R) = Spin, (2, 1) > SL(2, R)/Z2 =50,(2, 1).
We obtain upon restriction the exact sequence
Z,>T->T

which splits since the relation (4.1) can be always satisfied on the level of SL(2, R)
matrices. All the 228 = | Hom(T", Z2)| spin structures on U/T are defined accord-
ing to the method of chapter 2.

We pass now to closed nonorientable surfaces. Topologically they are also
classified by their genus g > 1 which is, this time, a number of components
RP,.

2

Example 3

The g = 1 surface RP, has been already dealt within [9]; we shall rephrase
this in our terminology in light of the general construction given in chapter 2.
Since RP, = 52 /Z,, where Z, is generated by the total inversion J :x—>—x
in R? , we start with the unique pin structure on S§? = 0(3)/0(2) (with the struc-
ture group Pin*(2)), namely

Pin*(3)3 0(3) » 0(3)/0(2) = §2,
where n, = p,. The derivative J = TJ is simply given by J :A»—A4,4 € 0(3).

It is covered by #* J: 4> wZ, = Pin*(3), where w is the canonical volume
element of the Clifford algebra underlying Pin*(3). We see that splitting of

(1,-D~>Q,-1,7, -H->1,))

exists iff w? = 1. This condition singles out the group Pin™(3) and therefore
there is no Pin* (2) structure on RP,, but there are the following two Pin™(2)
structures
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n, Pin~(3)/{1, + w} > 0(3)/{t, — 1}.

Example 4

A nonorientable closed surface Ng of genus g > 3 is a quotient of U by a NEC
(non-euclidean crystallographic) group I', generated by g elements 7y, with the
relation

£
ﬂ yi=1 (4.3)
i=1

They act as a composition of J :z—=+—Zand the action of SL(2, R) via (4.2) (with
a, # d].). Now, the group generated by SL(2, R)/Z, and J is just 01(2,1) (see
the end of chapter 3). We obtain its double coveringsasPin 1+ (2, 1)orPin 17(2, 1)
according to whether we put a (trivial) Pin* (2), or Pin~(2) structure on U. In
these two cases an element J covering J satisfies (.7)2 = * 1 and is explicitly
given by

T:@ 2~ (e),d@)
with J = o, or io, respectively. Thus a double covering F: of I' is precisely

that subgroup of Pin t* (2, 1) or Pin 1~ (2, 1) which covers I". This incidentally
shows that the relation

£
[]7=1 (4.4)
i=1
(required for a splitting) can be satisfied only for one of these two subgroups
if g is odd since then they differ by a sign i?f = — 1. In [10] it was shown that

there are Pin~(2) but no Pin* (2) structures on closed non-orientable odd genus
surfaces and thus (4.4) is satisfied for F_. For even genus we see that there are
either both Pin*(2) structures or none. It was shown in [10] that the former is
the case.

An immediate consequence of this and of the fact that Pin (2) has no real
representations is that there are no Majorana (s)pinors on closed odd genus
non-orientable surfaces (this result has been also shown in [11]).

In the rest of this section we shall discuss some examples which serve a two-
fold purpose. On the one hand they illustrate our method for more complicated
manifolds. On the other hand they show that the conditions for the existence of
«non-Clifford» pin structures generally differ from those for Pin*(n) and
Pin*(p. q). The idea of the construction is the following: the product of two
non-orientable manifolds admits neither Pin* nor Pin~ structures (the obstacle
being the non-commutativity of reflections in M, and M,). But this obstacle
can be overcome if we equip M, x M, with a pseudo-riemannian metric and use
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pin structures with one of the Pin“'b'c(p, q) groups with abc = +. With this
in mind we proceed to

Example 5

It is known that the product RP, x RP, does not even admit spin® or pin®
structures [13], but we can equip RP, x lRP2 with a pseudo-riemannian metric
of signature (++——). We may follow the same reasoning as in the case of ]RP2
alone but now simultaneously for the two inversions J1 and J2 ‘which commute.
By requiring that their lifts commute as well, (this excludes the Pin®%.¢(2, 2)
groups with abc = — 1) we arrive at the conclusion that the only admissible
structure group is Pin=>~>% (2, 2). The four different splittings

0y (LT x (1,7y) = (1,jwy) x (1, kw,), for /, k€ (+, -)

then give rise to four pin structures on ]RP2 b%s RP2. The fact that only
Pin=>~* (2, 2) is admissible is most easily seen in terms of maximal compact
subgroups and using (3.2).

Example 6

Let us consider finally the product K, x K, of two Klein bottles. Since it
admits metrics of arbitrary signature (p, 4 — p) this will allow us to see the in-
fluence of the signature on the existence of Pin®?:¢ structures. Furthermore,
since K, x K2 isaZ, x Z, quotient of T x T (see below), which itself already
has 24= 16 spin structures, the subtle dependence on these will also become
apparent. «Twisted» scalar and spinor fields on K have also been treated in [14].
Since the Klein bottle is obtained from 7 by quotienting the Z,-action generated
by

J :(xl,x:,')—>(x1 +7r,—x2),
we have K| x K, =T xT /F,whereF=22 xZ,=(1,J,,J,, J,J,) with
J] :(,\'],xz,x3,x4)—>(x1 +1r,—x2,x3,x4),
12 :(x],>:2,x3,x4)-+(x1,x2,x3 + 7, ——x4).
The inequivalent Pir®-? ¢ structures on 7 x T can be written down as
n:Tx Pin®tS(p, 4 —p)—> T x0(p, 4 —p).
(x, A)~> (x, R(k, x)p"b-¢(4))

where R(k, x) is a rotation in the 3-4 plane with winding number & = 0 or |
along x;. Starting for example with the trivial (k; = 0) pin-structure one sees
that the structure groups Pint t:% (p, 4 — p) with p = 2, 3 are allowed, each
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leading to 4 =| Hom(Z, x Z,, Z,)| pin-structures on K, xK,.

For the twisted pin-structures (k' # O for some i) the situation is as follows.
There are no Pin®?:¢(3, 1) structures for signature (— +++) and any k, whereas
in the case (+—~++) we have the following admissible structure groups on K L% K,.

Pin*t**(3,1) for k2 =k' =0

Pin*>—(3,1) fork? =0, k! =1
Pin=*=(3,1) fork? =1,k =0
Pin——*(3,1) fork? =1,k =1,

(k' and k3 arbitrary) giving rise to plenty of pin structures. The other signatures
can be dealt with analogously.

5. CONCLUSIONS AND OPEN PROBLEMS

We have classified and constructed G-structures on quotient manifolds M/
in terms of data on M and illustrated this method on Riemann surfaces and
certain non-orientable manifolds. Furthermore we have studied the 8 inequi-
valent double coverings of the pseudo-orthogonal groups O(p, g), p = g > 1,
emphasizing in particular their finite group structure and their relevance for
defining «pinors» on non-orientable manifolds. There remain however some
open problems, which deserve attention:

a) Do there exist finite dimensional faithful irreducible representations of
Pin®%:€(p, q)?. Preliminary investigations seem to indicate that this may not
be the case e.g. for the group Pin* ** (3, 1).

b) What are the topological obstructions to the existence of a Pin
ture on a manifold M?. Our examples (section 4) only indicate that they certainly
differ from the obstructions for pin*-structures.

¢) Can the theorem of section 2 be extended in a meaningful way to handle
orbifolds as well? This question has been discussed at the end of section 2, where
the limitations of this extension have been indicated.

d) Can one suggest a gedanken experiment which could be sensitive to the
labels @, b, ¢? One can write the analogue of Dirac operator for «non-Clifford»
groups Pin®?-¢. the square of this operator will however contain mixed deriva-
tives which does not follow the original idea of Dirac.

2.b.¢ struc-
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Note added in proof: After completion of this work we received the papers
«Spin structures and Killing Spinors on Lens Spaces» (by A. Franc, J. Geom.
Phys. 3 (1987), 277) and «Spinors on Spherical Space Forms» (by P. Gilkey,
Oregon preprint) where similar topics are discussed, the methods however being
quite different.
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